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Abstract
W Pauli pointed out that the existence of a self-adjoint time operator is
incompatible with the semi-bounded character of the Hamiltonian spectrum.
As a result, there has been much argument about the time–energy uncertainty
relation and other related issues. In this paper, we show a way to overcome
Pauli’s argument. In order to define a time operator, by treating time and space
on an equal footing and extending the usual Hamiltonian Ĥ to the generalized
Hamiltonian Ĥ µ (with Ĥ 0 = Ĥ ), we reconstruct the analytical mechanics
and the corresponding quantum (field) theories, which are equivalent to the
traditional ones. The generalized Schrödinger equation i∂µψ = Ĥµψ and
Heisenberg equation dF̂ /dxµ = ∂µF̂ + i[Ĥµ, F̂ ] are obtained, from which
we have: (1) t is to Ĥ 0 as xj is to Ĥ j (j = 1, 2, 3); likewise, t is to i∂0 as
xj is to i∂j ; (2) the proposed time operator is canonically conjugate to i∂0

rather than to Ĥ 0, therefore Pauli’s theorem no longer applies; (3) two types of
uncertainty relations, the usual �xµ�pµ � 1/2 and the Mandelstam–Tamm
treatment �xµ�Hµ � 1/2, have been formulated.

PACS numbers: 03.65.Xp, 03.70.+k, 03.65.Ta

1. Introduction

Time in quantum mechanics has been a controversial issue since the advent of quantum theory.
Nowadays, it still has theoretical and practical interest.

On the one hand, there exist enough reasons for us to consider time as a dynamical
variable or operator: (1) according to the principle of relativity, a position vector operator
in a reference system would have a temporal component in another reference system; (2) the
four-dimensional (4D) angular momentum tensor operator of quantum field theories shows
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that the time seems to play a twofold role, as both a parameter and an operator; (3) a major
conceptual problem in quantum gravity is the issue of what time is, and how it has to be treated
in the formalism [1]; (4) another related problem, which still remains controversial today, is
concerned with the formal definitions of tunnelling time [2, 3] and traversal time [4–11]. This
subtle question, motivated in part by the possible applications of tunnelling in semiconductor
technology, has received considerable attention in recent years; (5) in many cases, time is
not a mere parameter, but an intrinsic property characterizing the duration of certain physical
processes. The lifetime of unstable particles or collision complexes is a well-known example
[4]; (6) in signal analysis and signal processing theory [12, 13], as physical quantities time
and frequency are treated on a completely equal footing; (7) lack of an appropriate time
operator has a number of consequences. In particular, the time–energy uncertainty relation
has remained ambiguous over these years and its improper application has led to a great deal
of confusion [14–21].

But on the other hand, as is well known according to Pauli’s argument [22], the
existence of a self-adjoint time operator is incompatible with the semi-bounded character
of the Hamiltonian spectrum. By using a different argument based on the time-translation
property of the arrival time concept, Allcock has found the same negative conclusion [23–25].
This negative conclusion can also be traced back to the semi-infinite nature of the Hamiltonian
spectrum.

A way out of the dilemma set by Pauli’s objection is based on the use of positive operator
valued measures (POVMs) [26, 27]. Here, we shall propose a different one that emphasizes
the need to put time and space on an equal footing. In this work, we apply natural units of
measurement (h̄ = c = 1).

2. The flaws of Pauli’s statement

According to Pauli’s statement, let ĤψE = EψE and the time operator T̂ satisfy [Ĥ , T̂ ] = −i,
using [f, Ĥ ] = i ∂f

∂t
, we have Ĥ eiαT̂ ψE = (E + α) eiαT̂ ψE , where α is an arbitrary constant.

That is, eiαT̂ ψE is also the eigenstate of the Hamiltonian Ĥ with the eigenvalue (E + α),
which implies that the existence of the time operator contradicts the fact that the Hamiltonian
spectrum must be positive.

However, Pauli’s (or Allcock’s) statement may be criticized according to several
arguments:

(1) Pauli’s (or Allcock’s) demonstration implies a premise that the time operator itself is
not explicitly time dependent: dT̂

dt
= ∂T̂

∂t
+ i[Ĥ , T̂ ] = i[Ĥ , T̂ ]. However, studying

the conservative property of the 4D angular momentum tensor of a free field (e.g., the
Dirac field), we find that, in contradiction to Pauli’s (or Allcock’s) statement, we have
dT̂
dt

= ∂T̂
∂t

+i[Ĥ , T̂ ] = ∂T̂
∂t

(see appendix A). That is to say, in Heisenberg’s picture, the time
operator is explicitly time dependent, just as the position operator is explicitly dependent
on the position coordinate.

In fact, the 4D angular momentum tensor of a charged field is related to the
electromagnetic moment tensor (see appendix B), and has observable effects [28].

(2) As will be shown later, the correctly defined time operator is canonically conjugate to i ∂
∂t

rather than to Ĥ . Correspondingly, Pauli’s (or Allcock’s) statement no longer holds and
it is now just a matter of choosing a new zero-energy reference surface.

(3) In fact, Galapon [29–31] has shown that Pauli’s implicit assumptions are not consistent
in a single Hilbert space and that a class of self-adjoint and canonical time of arrival
operators can be constructed for a spatially confined particle.
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3. The starting point for introducing the time operator

As mentioned above, an important motive for trying to introduce a time operator lies in that the
theory of relativity requires that time and space must be treated on an equal footing. However,
the traditional theories treat time and space very differently:

(1) The traditional many-particle system theory has a defect: the system contains only one
time variable while there are as many position variables as there are particles which is in
contradiction with the relativity of simultaneity. As observed in another reference system,
all particles in the system would no longer share a common time coordinate, and the
original Hamiltonian would no longer correspond to the total energy, i.e., the sum of the
individual energies of all particles at the same moment of time (note that the energy of
a single particle in the system is not necessarily conservative). Historically, in view of
this unsatisfactory aspect of the traditional theory, people have introduced the many-time
formalism theory [32–34] (being equivalent to the Heisenberg–Pauli theory), where for a
system composed of N particles, there corresponds N distinct time and space variables.
In this sense, time and space are treated with equality in the many-time formalism [35].

(2) However, even in the many-time formalism of quantum mechanics, for every single
particle of a many-particle system, its time and space coordinates are still not equal,
namely its space coordinates can be taken as dynamic variables while the time coordinate
cannot. This is what we will try to rectify in this paper. In view of what is mentioned
above, our discussion would only be limited to the relativistic single-particle and quantum
field cases (while the nonrelativistic single-particle theory can be taken as a special case
of the former).

Certainly, even in the classical theory of relativity, time and space could not be completely
equal because of the law of causality. In other words, in spacetime diagrams, the distribution
of the worldline of an arbitrary particle is not symmetrical about the surface of lightcone.

In a word, in order to define a time operator, it is necessary to put the time coordinate on
the same footing as position coordinates. For this, we reconstruct the analytical mechanics
and the corresponding quantum theories, which are equivalent to the traditional ones.

3.1. The generalized Schrödinger equation

Starting from the usual relativistic quantum mechanics equations,we can obtain the generalized
Schrödinger equations as follows:

i∂µψ(x) = Ĥµψ(x) (µ = 0, 1, 2, 3) (1)

where Ĥµ is the generalized Hamiltonian with Ĥ 0 = Ĥ being the usual Hamiltonian.

3.1.1. The generalized Schrödinger form of the Klein–Gordon equation. As for the Klein–
Gordon equation

(∂µ∂µ + m2)φ = 0 (2)

it is possible to find a Schrödinger formulation [36] of equation (2), where it is transformed into
equation (1) with µ = 0. Now, we will show that equation (2) can also be read as equation (1)
with µ = l = 1, 2, 3. Let

ϕ = 1

2

(
i − i

m

∂

∂xl

)
φ

(l = 1, 2, 3)

χ = 1

2

(
i +

i

m

∂

∂xl

)
φ

(3)
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(fortunately, the massless spin-0 particle does not exist) and

ψ =
(

ϕ

χ

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0
0 −1

)
. (4)

Using equations (3) and (4), we can express equation (2) as equation (1) with µ = l = 1, 2, 3,
where

Ĥ l = − i

2m
(τ3 + iτ2)(∂

ν∂ν − ∂l∂l) − imτ3 (5)

note that the repeated indices in ∂ν∂ν are summed while those in ∂l∂l are not, ν = 0, 1, 2, 3
while l is one of 1, 2, 3. An operator must satisfy the condition of Hermiticity. Then, similar
to reference [36], the scalar product and the expectation value are defined as

〈ψ|ψ ′〉 ≡
∫

dσ lψ+τ2ψ

(l = 1, 2, 3)

〈L̂〉 ≡
∫

dσ lψ+τ2L̂ψ

(6)

respectively, where dσµ ≡ (dx1 dx2 dx3, dt dx2 dx3, dx1 dt dx3, dx1 dx2 dt) = (dσ 0, d⇀
σ)

stands for a 3D hypersurface element,and dσ l ≡ (dt dx2 dx3, dx1 dt dx3, dx1 dx2 dt) = (d
⇀

σ).

3.1.2. The generalized Schrödinger form of the Dirac equation. Substituting

Ĥµ = −γ µ (iγ ν∂ν − iγ µ∂µ) + γ µm (µ = 0, 1, 2, 3) (7)

into equation (1), we can obtain the same Dirac equation for µ = 0, 1, 2, 3, where γ µ are the
Dirac matrices, the repeated indices in iγ ν∂ν are summed while those in iγ µ∂µ are not. In
contrast to the case of the Klein–Gordon equation, here the scalar product and the expectation
value are defined as the traditional ones.

All mentioned above in section 3.1. also hold in the presence of interactions. For example,
one just makes the replacement ∂µ → ∂µ + i eAµ for each equation above that contains
∂µ (µ = 0, 1, 2, 3).

3.2. The generalized Heisenberg equation

Using equation (1) and the corresponding definitions of expectation value, one can obtain

d〈F̂ 〉
dxµ

=
〈

∂F̂

∂xµ

〉
+ i〈[Ĥµ, F̂ ]〉 (8)

where 〈F̂ 〉 is the expectation value of a dynamical operator F̂ .
In general, by enlarging t to xµ, we can arrive at the 4D generalization of the time-

evolution operator (say, the spacetime evolution operator). Furthermore, in an analogous
procedure, we can arrive at the 4D generalization of Heisenberg’s equation

dF̂

dxµ
= ∂F̂

∂xµ
+ i[Ĥµ, F̂ ]. (9)

Traditionally, the 4D generalization of Heisenberg’s equation is [37]

∂F̂

∂xµ
= i[P̂ µ, F̂ ]. (10)

However, from equation (10), we can only obtain ∂F̂
∂xµ = ∂F̂

∂xµ . That is to say, in contrast to
equation (9), equation (10) is only a mathematical identity (without any physical content)
rather than a physical equation.
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In addition, using equation (9), one can obtain

�xµ�Hµ � 1
2 (11)

where �Hµ ≡
√

〈(Ĥ − 〈Ĥ 〉)2〉 is the uncertainty (the mean variation) of Ĥ , and �xµ is

defined by �xµ

∣∣〈 dF̂
dxµ

〉∣∣ = �F . That is to say, the Mandelstam–Tamm treatment [38] of the
time–energy uncertainty relation (as it is presented in most textbooks) has a counterpart in the
position–momentum uncertainty relation.

3.3. The generalization in quantum field theory

Before going on, let us introduce the generalized analytical mechanics. Let q be the generalized
coordinates of a system, p the generalized momenta, L the Lagrangian, H the Hamiltonian
and A the action. Generalized analytical mechanics can be obtained by extending t to xµ (let
µ = 1 without loss of generality). For this, we make the following replacements:

A =
∫

L dt → A =
∫

L1 dx1 (from which we define L1) (12)

q(t) → q(x1) L(q(t), q̇(t)) → L1(q(x1), ∂1q(x1)) (by definition). (13)

Using equations (12) and (13), we have

∂L

∂q
− d

dt

∂L

∂q̇
= 0 → ∂L1

∂q
− ∂1 ∂L1

∂∂1q
= 0 (by the principle of least action). (14)

In fact, equation (14) is a special case of the Whittaker equation [39]. Furthermore,

p ≡ ∂L

∂q̇
→ p(1) ≡ ∂L1

∂∂1q
(by definition) (15)

ṗ = ∂L

∂q
→ ∂1p(1) = ∂L1

∂q
(by equations (14) and (15)) (16)

H ≡ pq̇ − L → H1 ≡ p(1)∂1q − L1 (by definition) (17)

q̇ = ∂H

∂p
ṗ = −∂H

∂q
→ ∂1q = ∂H1

∂p(1)

∂1p(1) = −∂H1

∂q

(by equations (12)–(17)) (18)

df

dt
= ∂f

∂t
+ {H,f } → df

dx1
= ∂f

∂x1
+ {H1, f } (by equations (18)) (19)

where f = f (q, p(1), x
1) and {H1, f } = ∂f

∂q

∂H1
∂p(1)

− ∂f

∂p(1)

∂H1
∂q

.
Clearly, all the preceding steps are based on first principles and do not resort to any

heuristic argument. Then we put t on the same footing as
⇀

x in our analytical mechanics. The
correctness of such a formalism can be further shown later.

The generalization mentioned above is also valid for quantum field theory. Let
dσµ (µ = 0, 1, 2, 3) stand for a 3D hypersurface element, if the action A = ∫

d4x , where 

stands for the Lagrange density, using equation (12), we have

Lµ =
∫

dσµ (µ = 0, 1, 2, 3). (20)

Obviously, L0 = L is the usual Lagrangian.
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We assume that the 3D hypersurface σ l (l = 0, 1, 2, 3) is divided into small cells of size
�σl

i . With each cell, we associate the respective average values of the functions, for example:

φi(x
l) = 1

�σl
i

∫
�σ l

i

φ(�x, t) dσ l. (21)

As �σl
i → 0, φi(x

l) → φ(
⇀

x, t) ≡ φ(x). By applying equations (12)–(19) and proceeding
analogously to the traditional process of canonical quantization, we can obtain the following
results. The generalized canonically conjugate field of φ(�x, t) is defined as

πl(�x, t) ≡ ∂(x)

∂∂lφ(x)
(l = 0, 1, 2, 3) (22)

and the generalized Hamiltonian is

Hl(x
l) ≡

∫
[πl(x)∂lφ(x) − gll(x)] dσ l (23)

where gµν is the metric tensor with diag(1,−1,−1,−1), the repeated index l is not summed.
Obviously, Tµν = πµ∂νφ − gµν is the energy–momentum tensor of a field (see appendix C).

In the case of quantum field theory, however, the condition of microcausality must
be taken into account. Traditionally, we first study the plane-wave solutions of a free
field equation and obtain p2

0 = p2
1 + p2

2 + p2
3 + m2 (in general, we can call wµ ≡

√
p2

µ

(µ = 0, 1, 2, 3) the frequency or wave number in xµ), and then write the general solution as
a linear combination of the ±w0 solutions. The general solution contains the factors e±ipx ,
where px = w0t − p1x1 − p2x2 − p3x3, w0 � 0 while p1, p2, p3 ∈ (−∞, +∞). Now, in
our case (making the replacement t → x1 without loss of generality), in order to preserve
microcausality, when we obtain p2

0 = p2
1 + p2

2 + p2
3 + m2, i.e., p2

1 = p2
0 − p2

2 − p2
3 − m2,

we rewrite the general solution as a linear combination of the ±w1 ≡ ±
√

p2
1 solutions. This

time in the factors e±ipx , we have px = p0t − w1x1 − p2x2 − p3x3, where w1 ≡
√

p2
1 � 0

while p0, p2, p3 ∈ (−∞, +∞).
In the following, we will take the Klein–Gordon field and the Dirac field for example,

while the photon field is analogous to the former.

3.3.1. The Klein–Gordon field. The Lagrange density of the Klein–Gordon field φ(
⇀

x, t) =
φ(x) reads

(x) = ∂µφ+(x)∂µφ(x) − m2φ+(x)φ(x) (24)

where φ+ is the Hermitian adjoint of φ. Let wµ ≡
√

k2
µ and kx = klx

l + wµxµ (the repeated
index µ is not summed), where wµ � 0 and kl ∈ (−∞, +∞), µ 
= l = 0, 1, 2, 3. One can
easily show that the fields φ and φ+ can also be expressed as a linear combination of the ±wµ

solutions

φ(x) =
∫

dσ
µ

k

(
akuk(x) + b+

k u
∗
k

)
(25)

where uk(x) = [2w1(2π)3]−
1
2 e−ikx, dσ

µ

k is the µ-component of the 3D hypersurface element
in 4-momentum space. As wµ → 0, all our final results (in the observable sense) also hold.

By defining a
↔
∂b ≡ a∂µb − (∂µa)b, we have

ak =
∫

dσµu∗
k(x)i

↔
∂φ(x)∫

dσµu∗
k′(x)i

↔
∂uk(x) = δ3(kj − k′

j ) (µ 
= j = 0, 1, 2, 3)

(26)
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and so on. Using equation (22), we have

πµ(x) = ∂µφ+(x) π+
µ = ∂µφ(x) (27)

in view of the fact that what we finally utilize is the canonically conjugate commutators
rather than the so-called covariant commutators (the former correspond to the derivative of the
latter), and we only discuss the former. Generally, when φ and φ+ are expressed as a linear
combination of the ±wµ

(
wµ ≡

√
k2

µ

)
solutions, we have

[φ(x), πµ(y)] = i
∫

d4k[wµδ(k2 − m2) e−ik(x−y)] (28)

[φ(x), πµ(y)]|xµ→yµ
= iδ3(xl − yl) (µ, l = 0, 1, 2, 3 µ 
= l) (29)

and so on. Using equation (23), we have

Hµ =
∫

dσµ
[
πµ∂µφ + π+

µ∂µφ+ + 
]

=
∫

dσ
µ

k

(2π)3
wµ(k)[a+(k)a(k) + b+(k)b(k) + 1]. (30)

In view of wµ = wµ(k) � 0 (but not wµ(k) ≡ 0 for arbitrary kl, µ, l = 0, 1, 2, 3, µ 
= l), the
generalized Hamiltonians Hµ are always positive for the Bose field. On the one hand, φ(x) is
written as a Hilbert space operator, which creates and destroys the particles that are the quanta
of field excitation. On the other hand, φ(x) is written as a linear combination of the ±wµ (µ
is one of 0, 1, 2, 3) solutions of the Klein–Gordon equation. Both signs of the xµ-dependence
in the exponential appear, although wµ is always positive (as mentioned before, our final
results hold also for wµ → 0). If φ(x) is a single-particle wavefunction, it would correspond
to states of positive- and negative-frequency (±wµ) modes. The connection between the
particle creation operators and the waveforms displayed here is always valid for free quantum
fields: a negative-frequency solution of the field equation, being the Hermitian conjugate of
a positive-frequency solution, has as its coefficient the operator that creates a particle in that
positive-frequency single-particle wavefunction. In this way, the fact that the related equations
have both positive- and negative-frequency solutions (because of k2

0 = k2
1 + k2

2 + k2
3 + m2 being

always valid) is reconciled with the requirement that a sensible quantum theory contain only
positive generalized Hamiltonians.

For the photon field, the zero-point contribution to the generalized Hamiltonians Hµ may
lead to generalized Casimir effects [40], which may be verified by a different experimental
set-up for a different µ = 0, 1, 2, 3 (for µ = 1, 2, 3, the Casimir force is related to the
time-varying difference �Hµ, which will be discussed in our next paper).

Finally, the Heisenberg equations of motion are

∂µφ = i[Hµ, φ] (31)

∂µπµ = i[Hµ, πµ] (32)

and so on, from which the Klein–Gordon equations can be obtained.

3.3.2. The Dirac field. As for the Dirac field equation, however, its ±wl (l = 1, 2, 3)

solutions are not orthogonal and therefore must be tackled in another manner. According to
the traditional procedure of transforming the quantum mechanics description into the quantum
field theory one, our discussions can be carried out on the basis of equations (1) and (7).
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For this, we reinterpret ψ(x) in equation (1) as a field operator that obeys the canonical
anti-commutation rules:

{ψα(
⇀

x, t), ψ+
β (�x′, t)} = δαβδ3(

⇀

x − ⇀

x ′)

{ψα(
⇀

x, t), ψβ(
⇀

x′, t)} = {
ψ+

α (
⇀

x, t), ψ+
β (

⇀

x′, t)
} = 0.

(33)

The generalized Hamiltonian is

Hµ =
∫

ψ+(x)Ĥµψ(x) d3x (34)

where Ĥµ is given by equation (7). The dynamics of the field operators are determined by the
generalized Heisenberg equations of motion

∂ψ(x)

∂xµ
= i[Hµ,ψ(x)] (35)

∂ψ+(x)

∂xµ
= i[Hµ,ψ+(x)] (36)

for example, with the help of equation (33), one finds that equation (35) leads back to
equation (1) (and hence the Dirac equation). Furthermore, using equation (34), we have

Hµ =
∫

d3p
∑

s

pµ

[
c+(p, s)c(p, s) + d+(p, s)d(p, s) + 1

2δµ0
]

(37)

where c+, c (d+, d) are the creator and annihilator of a particle (anti-particle), respectively.
pµ is the four-momentum of a single Fourier mode of the field. Obviously, Hµ is the total
four-momentum of the field, which implies that

Hµ = Pµ =
∫

ψ+(x)P̂ µψ(x) d3x (µ = 0, 1, 2, 3) (38)

where P̂ µ = i ∂
∂xµ . However, in spite of equation (38), if we rewrite equation (35) as

∂ψ(x)

∂xµ
= i[Pµ,ψ(x)] (39)

contrary to equation (35), equation (39) gives ∂ψ(x)

∂xµ = ∂ψ(x)

∂xµ instead of leading back to
equation (1).

3.3.3. Interacting quantum fields. In the following, we will take quantum electrodynamics
(QED) for example, where the Hamilton density describing the interaction is given by

Hint = eψ̄(x)γ µψ(x)Aµ(x). (40)

In the interaction picture, the field operators ψ(x) and Aµ(x) are the same as for free fields.
Meanwhile, in our formalism, the electromagnetic vector potential Aµ(x) is written as a linear

combination of the ±w1
(
w1 ≡

√
k2

1

)
solutions

Aµ(x) = 1√
(2π)3

∫
dσ 1

k

1√
2w1

∑
λ

eµ(k, λ)
(
akλ e−ikx + a+

kλ eikx) (41)

where eµ(k, λ) (µ = 0, 1, 2, 3) are the polarization four-vectors, λ = 0, 1, 2, 3, the

polarization indices, kx = k0t − w1x1 − k2x2 − k3x3, w1 ≡
√

k2
1 while k0, k1, k2, k3 ∈

(−∞, +∞). As mentioned before, our final results also hold for w1 → 0.
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To apply Wick’s theorem, as for Aµ(x), we must generalize the definitions of the time-
ordering product and the time-evolution operator to the xµ-ordering product and xµ-evolution
operator, respectively. For example, the x1-ordering product is

T1Aµ(x)Aν(y) ≡
{

Aµ(x)Aν(y) x1 > y1

Aµ(y)Aν(x) x1 < y1
(42)

and x1-evolution operator U(x1, x
′
1) is defined by

|a(x1)〉 = U(x1, x
′
1)|a(x ′

1)〉. (43)

From equations (41) and (42), it can be shown that the x1-Feynman propagator for photons is
the same as the usual t-Feynman propagator:

〈0|T1Aµ(x)Aν(y)|0〉 = 1

(2π)4

∫
d4k

−igµν

k2 + iε
e−ik(x−y). (44)

Furthermore, in the interaction picture, according to our formalism, we have

i
∂

∂x1
|a〉 = Hint|a〉. (45)

Let S ≡ U(+∞,−∞), from equations (43) and (45) we have

S = T1 exp

[
−i

∫
d4x Hint(x)

]
. (46)

We define the contraction of Aµ(x) in the traditional way while all the related definitions
for the Dirac field ψ(x) are the same as the traditional ones, except for replacing the time-
ordering product with the x1-ordering product. Correspondingly, in equation (46), we apply
the x1-ordering product and the corresponding contraction for Aµ(x) while keeping the usual
time-ordering product and contraction for ψ(x) (choosing a frame of reference in which ti > tj
as x1

i > x1
j ). In this way, the Feynman rules can be obtained, from which we can perform

some real calculations such as the particle-scattering process, where the initial state particles
come from (t, x1) = (−∞,−∞) and the final state particles go to (t, x1) = (+∞, +∞). The
results are the same as the usual ones.

4. Time operator

Up to now, we treat time and space on an equal footing by extending the usual Hamiltonian
Ĥ to the generalized Hamiltonian Ĥ µ(with Ĥ 0 = Ĥ ), which will provide the basis for us to
discuss the time operator correctly. First, let us refer to the following facts:

(1) From the generalized analytical mechanics to quantum field theory, t is to Ĥ 0 = Ĥ as xj

is to Ĥj (j = 1, 2, 3); likewise, t is to i ∂
∂t

as xj is to i ∂
∂xj

.

(2) Ĥµ is not identically equal to P̂ µ. Otherwise if Ĥµ ≡ i∂µ, equation (1) becomes a purely
mathematical identity Ĥµψ ≡ i∂µψ (where ψ can be arbitrary), with no physical content.

(3) In spite of (2), owing to equation (1), i∂µ and Ĥµ have the same spectrum distributions in
the same Hilbert space.

(4) Translating the classical mechanics into the relativistic quantum mechanics, we make the
replacement pµ → P̂ µ ≡ i∂µ rather than pµ → Ĥµ (µ = 0, 1, 2, 3).

(5) The generator of translation in xµ is directly p̂µ rather than Ĥµ. Only by making use of
equation (1) can we also express the generator as Ĥµ.

(6) Sometimes, one finds that [Ĥµ, xµ] = 0 (by equations (5) and (7), for example), whereas
[p̂µ, xµ] ≡ igµν .
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(7) In the 4D angular momentum tensor J µν = ixµ∂ν − ixν∂µ, xµ (µ = 0, 1, 2, 3) is taken
as the dynamics operator.

From (1)–(7), we can draw a conclusion as follows: (1) the defining expression for
4-momentum operator p̂µ is i∂µ and its form is the same for all fields, while Ĥ µ, as the

calculating expression for 4-momentum p̂µ (in the quantum field theory case, it is
√

p̂2
µ

instead of p̂µ for the Bose fields) has a different form for a different field; (2) the 4-vector xµ

is canonically conjugate to the 4-vector p̂µ = i∂µ rather than Ĥµ; (3) t can play a twofold
role, as a parameter or a dynamic variable.

In other words, just as Dirac thought [41], in the position representation, the time operator
T̂ is t itself, but in contrast to his viewpoint, the time operator t is canonically conjugate to
p̂0 = i ∂

∂t
rather than the Hamiltonian Ĥ 0 = Ĥ . i ∂

∂t
is the defining expression for the energy

operator while Ĥ corresponds to the calculating expression.
As a consequence, one can readily verify that the existence of a self-adjoint time operator

(i.e., t) is NOT incompatible with the semibounded character of the Hamiltonian spectrum.
In fact, let i ∂

∂t
ψE = ĤψE = EψE . Similar to Pauli’s argument, using

[
f, i ∂

∂t

] = −i ∂f

∂t
,

we have

i
∂

∂t
eiαtψE =(E − α) eiαtψE, i.e.,

(
i
∂

∂t
− α

)
ψE =(Ĥ − α)ψE =Ĥ ′ψE =(E − α)ψE.

Therefore, it is just a matter of the choice of zero-energy reference surface. In contrast to
Pauli’s argument, here we do not require any additional assumption. As is well known, the
signs of

⇀

x and
⇀

p depend on their directions while the signs of t and p0 depend on the choice
of zero-reference-point. Meanwhile, the related observable quantities depend only on the
difference, not on their absolute values.

Let
∫ +∞
−∞ ψ+(x)ψ(x) dσ l = 1 (l = 0, 1, 2, 3). If ψ+(x)ψ(x) dσ l is the probability of

finding a particle in the 3D hypersurface element dσ l at coordinate xl , then, according to
the principle of probability and statistics, the expectation value of operator xµ ought to
be defined as 〈xµ〉 ≡ ∫ +∞

−∞ ψ+(x)xµψ(x) dσ l(µ, l = 0, 1, 2, 3, µ 
= l). Especially, in the
(1 + 1)-dimensional spacetime (x1, t), dσ l = (dσ 0, dσ 1) = (dx1, dt), as µ = 0, we have
〈x0〉 = 〈t〉 = ∫ +∞

−∞ ψ+(x1, t)tψ(x1, t) dt , which is the average presence time [7, 42]. That is
to say, in the definition of presence time, it is x0 = t that plays the role of the time operator.
It is worthwhile to note that, as a physical quantity, we must make a distinction between the
unity in its defining expression and the diversity in its calculating expression. That is, the
defining expression has the same form for all cases, while the calculating expression may have
a different form for different cases.

This paper is intended to lay a foundation and formalism for a different resolution of
the time-in-quantum-mechanics conundrum; we will pay attention to its interpretation and
physical content more specifically in our forthcoming paper, in which we will give some
examples related to time of arrival, tunnelling time, jump time and passage time, etc.

In conclusion, it is reasonable to take x0 = t as the time operator conjugating to i∂0

rather than Ĥ . As a consequence, Pauli’s theorem no longer holds true in this case. Although
it is the most appropriate choice to take x0 = t as a parameter (because (1) in this case
the law of causality is naturally preserved, and (2) time is one-dimensional while space is
three-dimensional), x0 = t also plays the role of a time operator in quantum mechanics and
quantum field theory. In other words, the reasons for choosing time as a parameter lie not so
much in ontology as in methodology and epistemology.
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Appendix A. Time operator is time dependent

In fact, for the 4D angular momentum tensor operator J µν of a free Dirac field, we have

Ĥ = ⇀

α · p̂ + βm J µν = ixµ∂ν − ixν∂µ + Sµν (A1)

dJ µν

dt
= ∂J µν

∂t
+ i[Ĥ , J µν] = 0 (A2)

where Sµν = i
4 [γ µ, γ ν ] is the 4D spin tensor (µ, ν = 0, 1, 2, 3), γ µ,

⇀
α = γ 0 ⇀

γ and β = γ 0

are the Dirac matrices. Obviously, x0 = t presenting in the operator J µν plays the role of a
time operator, and then we have T̂ = x0. In view of the fact that [Ĥ , i∂µ] = 0, [Ĥ ,

⇀

x] = −i
⇀

α

and Ĥ
⇀
α + ⇀

αĤ = −2i
⇀

∂, by using (A2) (let µ or ν = 0), we have [Ĥ , x0] = 0, which can also
be directly derived from (A1). Therefore, (A2) implies that dT̂

dt
= ∂T̂

∂t
+ i[Ĥ , T̂ ] = ∂T̂

∂t
.

Appendix B. 4D electromagnetic moment tensor of a charged field

In an analogous manner (see, for example, [43]), we can extend the traditional relation between
3D angular momentum and magnetic moment to the 4D tensor case. As for the electromagnetic
vector potential Aµ(x), we have

Aµ(
⇀

x, t) = d

dt ′

∫
Aµ(

⇀

x, t) dt ′ = 1

4π

∫
J µ(

⇀

x′, t ′)

|⇀

x − ⇀

x ′|
d3x ′

= 1

|⇀

x|

∫
J µ(

⇀

x′, t ′) d3x ′ +
⇀

x

|⇀

x|3
∫

J µ(
⇀

x ′, t ′)⇀

x ′ d3x ′ + · · · (B1)

where t ′ = t − r
c

= t − r, r = |⇀

x − ⇀

x′| (h̄ = c = 1), J µ is a localized divergenceless current,
which permits simplification and transformation of the expansion (B1). Let f (x ′) and g(x ′)
be well-behaved functions of x ′ to be chosen below∫

(f J�g + gJ�f ) d4x = 0 (� · J = 0) (B2)

where � denotes the 4D gradient operator. Let f = xµ and g = xν , we have∫
(xµJν + xνJµ) = 0 (B3)

⇀

x
d

dt ′

∫
Jµ(x ′)⇀

x
′
d4x ′ =

∑
j

xj

d

dt ′

∫
x ′

jJµ(x ′) d4x ′

= −1

2

∑
j

xj

d

dt ′

∫
(x ′

iJµ − x ′
µJj ) d4x ′. (B4)



5146 Z Y Wang et al

It is customary to define the electromagnetic moment density

mµν = 1
2 [xµJ ν − xνJ µ] (B5)

and its integral as the electromagnetic moment

Mµν = 1

2

∫
[x ′µJ ν − x ′νJ µ] d3x ′. (B6)

Assuming that J µ is provided by N charged particles with momenta p
µ
n = m0u

µ
n (n =

1, 2, . . . , N) and charges e, then J µ(x ′) = ∑
n eu

µ
n (t ′)δ3(

⇀

x − ⇀

x ′
n)

dτ
dτ ′ , where τ, τ ′ are the

proper times. When t = t ′, we have

Mµν = e

2m0

∑
n

(
xµ

n pν
n − xν

npµ
n

)dτ

dt
= e

2m
Lµν (B7)

where m is the relativistic mass, Lµν is the 4D angular momentum tensor.

Appendix C. Another origin of equation (23)

In fact, equation (23) can be obtained in another manner. If we impose the boundary conditions

φ(x), ∂µφ(x) → 0 as xµ → ±∞ µ = 0, 1, 2, 3 (C1)

on the field φ(x), then an equation of continuity ∂jµ(x)

∂xµ
= ∂µjµ = 0 associated with Noether’s

theorem can be integrated over the 3D hypersurface and the theorem of Gauss can be used:

0 =
∫

σ l

∂µjµ dσ l =
∫

σ l

∂ ljl dσ l +
∮

∂σ l

jm dSm (C2)

where m, l = 0, 1, 2, 3 and m 
= l. The value of the integral over the 2D surface ∂σ l vanishes
since the fields and their derivatives are assumed to fall off sufficiently. Therefore,

∂l

∫
σ l

jl dσ l = 0 (the index l is not summed). (C3)

Namely Gl ≡ ∫
σ l jl dσ l is a quantity independent of xl (we call Gl the generalized conserved

quantity with respect to xl). Now, let the current density jµ = Tµν , where Tµν is the canonical
energy–momentum tensor of a field:

Tµν = ∂

∂∂µφ
∂νφ − gµν. (C4)

Obviously, the corresponding generalized conserved quantity with respect to xl is the
generalized Hamiltonian Hl:

Gl =
∫

dσ lTll = Hl. (C5)

Which is exactly the same as equation (23).
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